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Abstract

The possibility of extending the treatment of second-order on-column reactions with two different reactants by
empirical peak shape equations to autocatalytic on-column reactions was investigated. An approximate analytical
solution is presented, which for small to medium conversions agrees with the solution of the ideal non-equilibrium

model of chromatography by a finite difference method.
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1. Introduction

Methods for the determination of rate con-
stants from chromatograms, which are obtained
with a reaction occurring on the chromatographic
column, are often based on the investigation of
the conversion as a function of certain chromato-
gram parameters (for general reviews, see Refs.
[1] and [2]).

In simple irreversible first-order reactions, the
knowledge of the dependence of the conversion
on the reaction duration or retention time is
sufficient for the evaluation of rate constants.
However, in complex first-order reactions, it
becomes necessary to approximate the product
pulse shapes by suitable functions for the de-
termination of the conversion [3,4], since it is not
possible to separate all the reaction partners
completely from each other.

Second-order reactions require consideration
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of the amounts injected and the pulse shapes of
the reactants [5]. Autocatalytic reactions of the
type R+ C— P + 2C, which are complex second-
order reactions, are rarely involved in discussions
of chromatographic reactors, since these re-
actions are suppressed by the separation of the
reactants.

In this paper, it is shown that autocatalytic
reactions can be investigated by methods which
are similar to those that we applied earlier to
second-order reactions with two reactants. They
can be carried out in a defined way if the slower
reactant is injected first and the faster reactant is
injected later. At first, a normal chromatographic
process is in progress, but since the faster reac-
tant overtakes the slower one, they are mixed at
a certain zone on the column and the reaction
occurs. After a certain time, the reactants are
completely separated again, which will stop the
reaction. Therefore, the products can, at least in
principle, also be completely separated from the
reactants.
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2. Mathematical modelling

All derivations are based on the model of
linear non-equilibrium chromatography with an
isothermal and homogeneous column and a con-
stant flow-rate, and the additional assumption
that the reaction rate is not limited by the mass
transfer rate between the chromatographic
phases:
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Especially in case of a non-linear reaction term,
no analytical solution can be found. Unless no
further simplification can be achieved, the de-
termination of a rate constant would have to be
based on a fitting algorithm including the time-
consuming procedures for the numerical solution
of the partial differential equation system.

However, the behaviour of the statistical mo-
ments can be studied by transforming the partial
differential equation (PDE) system Eq. 1 into a
system of ordinary differential equations (ODEs)
of the statistical moments for each reactant, as
shown previously [5] for simple second-order
reactions:
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This system of ordinary differential equations is
generally valid for linear liquid chromatographic
reactors. Its usefulness, however, depends on the
possibility of calculating the ‘“moments of the
reaction”, u;. These are formal applications of
the definition of the moments to the reaction
term, and in irreversible reactions they contain
only the peak shape equations and reaction
orders:

]—[\P it dt
:u‘ri__OL—_— (3)
[Twea
0 j=1

For an autocatalytic reaction:
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If the degradation of the peaks due to the
reaction is not too large (as it might be with
reversible reactions), then empirical pulse-shape
equations can be applied to approximate these
terms, and the ordinary differential equation
system can be solved numerically, i.e., by the
Runge—Kutta method.

Therefore, Eq. 1 was investigated by a finite
difference method in order to estimate the dis-
tortion especially of the catalyst peak during the
reaction. A Craig-like finite difference scheme
[6] was used, where the step width in the time
direction was evaluated from the spatial number
of grid points and the void time: At/t,/n,. The
spatial number of grid points was chosen in such
a way that the peak with the narrowest variance
was formed by the so-called numerical diffusion,
i.e., the diffusion-like acting numerical error due
to a limited number of grid points. The mass
transfer coefficients of the other peaks were then
adapted to meet their individual variances with
the given spatial step width of the grid. Care has
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to be taken that the mass transfer coefficients
evaluated in this way do not interfere with the
chemical reaction.

It was found (cf., Fig. 1) that there is a
profound distortion of the catalyst peak during
its overlay with the reactant; however, even this
distorted peak can still be approximated by a
monotonous empirical peak-shape equation [7],
i.e., the Gram—Charlier series (GCS) can be used
for the evaluation of the moments of the reaction
in Eq. 2.

Further simplifications and even an analytical
solution of Eq. 2 can be achieved if it is assumed
that the influence of the third and fourth mo-
ments on the conversion can be neglected for
sufficiently small conversions and, moreover, that
also the deviation of the first moments and
second central moments from linearity can be
neglected, ie., a Gaussian distribution with a
linear dependence of its moments on the spatial
coordinate is assumed for the pulse shape.

Then, the first equation of Eq. 2, together with
the linear dependence of the first and the second
central moments from the chromatographic pro-
cess, can be used to derive an analytical function
for the dependence of the zeroth moments on
the inlet amounts and the reaction duration:
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Fig. 1. Distortion of the catalyst peak during the overlay
within the column [simulation for case (b): my, =1, mg, =
0.1, at x// = 0.4 with the finite difference method].
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As in the case of a simple second-order reaction
with two different reactants, there is no depen-
dence of the conversion either on the difference
in the injection times of both reaction partners or
on their individual variances, as long as the faster
reactant completely overtakes the slower one
within the column. It should also be mentioned
that there is a striking similarity to the analogous
equation for an autocatalytic batch reaction (see
textbooks of physical chemistry):
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The concentrations in Eq. 4a correspond to the
concentration—time areas or zeroth moments in
Eq. 4, and the reaction duration ¢ corresponds to
the ratio of the void time to the difference of the
retention times of the reactants, #,/1( ug, — 4l

3. Resnits and conclusions

Summarizing the previous part of this paper,
the following suggestions for the determination
of the rate constant were introduced: numerical
solution of the PDE Eq. 1; numerical solution of
the ODE Eq. 2 with a GCS for the moments of
the reaction; numerical solution of the ODE Egq.
2 with a Gaussian for the moments of the
reaction; and analytical solution (Eq. 4) of Eq. 2,
assuming a Gaussian with a linear dependence of
its central moments on the spatial coordinate for
the moments of the reaction.

Since the other equations originate from the
PDE Eq. 1 by introducing simplifications of
increasing degree, they can only be applied in a
range where they are in agreement with the
results of Eq. 1. Therefore, three essential cases
were evaluated in investigating the possibilities
of determining rate constants from autocatalytic
reactions using liquid chromatographic equip-
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ment: (a) moderate rate constants and compar-
able magnitudes of the molar inlet amounts of
the reactant and the catalyst; (b) large rate
constants and the reactant in large excess with
respect to the catalyst; and (c) small rate con-
stants and the catalyst in large excess with
respect to the reactant. The resulting conversions
from the different calculation methods are com-
pared in Figs. 2—-4.

It was found that there is in general a co-
incidence between the results from the finite
difference method (PDE) and the solution of Eq.
2 using a GCS function as an approximation for
the peak-shape equation. Using the Gaussian
distribution as the approximate pulse-shape
equation, there are no significant deviations from
the PDE solution, except in case (b) and with
high conversions.

In case (a), it seems that the deviations of the
GCS and the Gaussian solution of Eq. 2 differ by
the same amount, but in opposite directions,
from the finite difference solution. Therefore, the
calculations were repeated with a spatial grid
point number of 10000, because then the nu-
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Fig. 2. Comparison of the dependence of the conversion with
respect to the reactant on the rate constant [case (a): mg, =
Mmey=1). g =5, e =2, At =05, ki = k. = 0.015 (in GCS
calculations). PDE: solution of Eq. 1 by a variance-adapted
finite difference method. GSC: solution of Eq. 2 with a
Gram-—Charlier series for the peak shape. GAU: solution of
Eq. 2 with a Gaussian distribution for the peak shape. ANA:
conversion as obtained by Eq. 4.
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Fig. 3. Comparison of the dependence of the conversion with
respect to the reactant on the rate constant [case (b): m,, =
1, m, = 0.1]. Parameters as in Fig. 2.

merical diffusion can be neglected and the same
mass transfer coefficients as in the GCS-solution
are applied. As can be seen from Fig. 5, the
differences between the conversions disappear
almost completely.

Surprisingly, the results of the approximate
analytical solution in Eq. 4 are not significantly
different from the other results for small to
medium conversions, although there is the rigid
additional assumption of linear variances, which
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Fig. 4. Comparison of the dependence of the conversion with
respect to the reactant on the rate constant for three different
inlet amount ratios of catalyst and reactant [case (¢} my, =1,
mc, = 10]. Parameters as in Fig. 2.
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Fig. 5. Comparison of the dependence of the conversion with
respect to the reactant on the rate constant [case (a)].
Parameters as in Fig. 2; PDE calculation with 10 000 steps in
spatial direction.

is not valid at all with high conversions (Fig. 6).
Consequently, it exhibits a marked deviation
from the PDE result especially in case (b), but
only a slight deviation in case (c).

The simulations demonstrate that it is unneces-
sary to solve Eq. 1 numerically for the calcula-
tion of a rate constant for autocatalytic reactions
running in a liquid chromatographic reactor.
Even the GC solution of Eq. 2, although being
most comparable to a finite difference solution of
Eq. 1 with a large number of spatial grid points,
is not required. The solution of Eq. 2 with a
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Fig. 6. Non-linearities in the dependence of the variances of
the reactants on the column length during the overlay.

Gaussian for the calculation of the moment of
the reaction will be sufficient in all practical
cases.

However, the analytical solution Eq. 4 is able
to substitute the numerical solutions for conver-
sions ranging up to 30% in all cases, and almost
completely in case (c). Additionally, in case (c) a
further simplification of Eq. 4 becomes possible:

mg _ katO
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in which the ratio of the concentration-time
areas on the left side can simply be substituted
by the ratio of the reactant areas with a chemical
reaction (overlaying the catalyst) and without a
chemical reaction (not overlaying the catalyst).
Measurements of this ratio with various catalyst
amounts permit the determination of the rate
constant from the slope of a plot of In(my/my,)
VS. Mg, Therefore, from the results of these
simulations, it is recommended that one should
choose the experimental conditions for the in-
vestigation of autocatalytic reactions in a liquid
chromatographic reactor according to case (c).

Symbols

a; effective concentration in the stationary

phase [mol/l]

concentration in the mobile phase [mol/l]

partition coefficient

mass transfer coefficient [1/s]

apparent rate constant, k, =k + k K-qy

[1/mol - s]

rate constant (stationary phase) [1/mol - s]

rate constant (mobile phase) [1/mol - s]

length of the column {cm]

m, zeroth moment [mol/] s]

mg  zeroth moment of the reactant (column
end) [mmol/I s]

mg, zeroth moment of the reactant (column
inlet) [mol/1 s]

mc, zeroth moment of the catalyst (column
inlet) [mol/1 s]

m,  zeroth moment of the reaction [mol/l s]

number of spatial grid points

o

®

«
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q retention capacity

r reaction terms

t time [s]

v, void time [s]

u linear flow rate [cm/s]

x length coordinate [cm]

At step width in time direction [s]

@ partial reaction order of the jth com-
ponent

M absolute ith moments [s’]

o absolute /th central moments [s']

4, - ith moment of the reaction [s']

¥, peak-shape equation of the jth compo-
nent

GCS Gram-Charlier series

¥ =11/2mu}) exp(—z*/2)[1 + §/6(z° — 2)
+ E4(z" — 62° + 3)]

S=uiVu’ e

E=(u}=3)) i

GAU Gaussian distribution

¥ =11/(2mul) exp(—z°/2)

2= (- m)e;

Indices

C catalyst
R reactant
P product
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